References
If you use the code, please, cite the following reference in all your publications. For specific implementations, see the different categories below.
A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, and C. Draxl, exciting — a full-potential all-electron package implementing density-functional theory and many-body perturbation theory, J. Phys.: Condens. Matter 26, 363202 (2014). DOI
GW
- D. Nabok, A. Gulans, and C. Draxl, Accurate all-electron G0W0 quasiparticle energies employing the full-potential augmented plane-wave method, Phys. Rev. B 94, 035118 (2016). DOI
- J. Gesenhues, D. Nabok, M. Rohlfing, and C. Draxl, Analytical representation of dynamical quantities in GW from a matrix resolvent, Phys. Rev. B 96 245124 (2017). DOI
- N. Salas-Illanes, D. Nabok, and C. Draxl, Electronic structure of representative band-gap materials by all-electron quasi-particle self-consistent GW calculations, Phys. Rev. B 106, 045143 (2022). DOI
Bethe-Salpeter equation (BSE): optical spectroscopy
- C. Vorwerk, B. Aurich, C. Cocchi, and C. Draxl , Bethe-Salpeter equation for absorption and scattering spectroscopy: implementation in the exciting code, Electron. Struct. 1, 037001 (2019). DOI
- F. Henneke, L. Lin, C. Vorwerk, C. Draxl, R. Klein, and C. Yang, Fast optical absorption spectra calculations for periodic solid state systems, Commun. Appl. Math. Comp. Sci. 15, 89 (2020). DOI
Bethe-Salpeter equation: core spectroscopy
- C. Vorwerk, C. Cocchi, and C. Draxl, Addressing electron-hole correlation in core excitations of solids: An all-electron many-body approach from first principles, Phys. Rev. B 95, 155121 (2017). DOI
- C. Draxl and C. Cocchi, exciting core-level spectroscopy, Int. Tab. Cryst. 1 (2021). DOI
- E. Shirley, J. Vinson, F. M. F. de Groot, H. Elnaggar, F. Frati, R. Wang, M. Delgado-Jaime, M. van Veenendaal, M. Haverkort, R. Green, Y. Kvashnin, A. Hariki, H. Ramanantoanina, C. Daul, B. Delley, M. Odelius, M. Lundberg, O. Kuhn, S. Bokarev, K. Gilmore, M. Stener, G. Fronzoni, P. Decleva, P. Kruger, M. Retegan, J. Fernandez-Rodriguez, G. van der Laan, Y. Joly, C. Vorwerk, C. Draxl, J. Rehr, A. Tanaka, and H. Ikeno, 2p x-ray absorption spectroscopy of 3d transition metal systems, J. Elec. Spec. 249, 147061 (2021). DOI
- C. Vorwerk, F. Sottile, and C. Draxl, All-electron many-body approach to resonant inelastic-ray scattering, PCCP 24, 17439 (2022). DOI
Time-dependent density-functional theory (TDDFT)
- S. Sagmeister and C. Ambrosch-Draxl, Time-dependent density functional theory versus Bethe-Salpeter equation: An all-electron study, Phys. Chem. Chem. Phys. 11, 4451 (2009). DOI
- S. Rigamonti, S. Botti, C. Draxl, L. Reining, V. Veniard, and F. Sottile, Estimating excitonic effects in the absorption spectra of solids: problems and insight from a guided iteration scheme, Phys. Rev. Lett. 114, 146402 (2015). DOI
- R. Rodrigues Pela and C. Draxl, All-electron full-potential implementation of real-time TDDFT in exciting, Electronic Structure 3, 037001 (2021). DOI
- R. Rodrigues Pela and C. Draxl, Ehrenfest dynamics implemented in the all-electron package exciting, Electronic Structure 4, 037001 (2022). DOI
- R. Rodrigues Pela and C. Draxl, Speeding up all-electron real-time TDDFT demonstrated by the exciting package, Comp. Phys. Commun. 304, 109292 (2024). DOI
Phonons and Raman spectroscopy
- Y. Gillet, S. Kontur, M. Giantomassi, C. Draxl, and X. Gonze, Ab Initio Approach to Second-order Resonant Raman Scattering Including Exciton-Phonon Interaction, Sci. Rep. 7, 7344 (2017). DOI
LDA-1/2
- R.R. Pela, U. Werner, D. Nabok, and C. Draxl, Probing LDA-1/2 as starting point for G0W0 calculations, Phys. Rev. B 94, 235141 (2016). DOI
- R. Rodrigues Pela, A. Gulans, and C. Draxl, The LDA-1/2 method implemented in the exciting code, Comp. Phys. Commun. 220, 263 (2017). DOI
Spin-orbit coupling (SOC)
- B. Maurer, C. Vorwerk, and C. Draxl, Rashba and Dresselhaus effects in two-dimensional Pb-I-based perovskites, Phys. Rev. B 105, 155149 (2022). DOI
- A. Gulans and C. Draxl, Influence of spin-orbit coupling on chemical bonding preprint (2022). arXiv
- C. Vona, S, Lubeck, H. Kleine, A. Gulans, and C. Draxl, Accurate and efficient treatment of spin-orbit coupling via second variation employing local orbitals, Phys. Rev. B 108, 235161 (2023). DOI
Tools
- R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, and C. Draxl, ElaStic: A tool for calculating second-order elastic constants from first principles, Comp. Phys. Commun. 184, 1861 (2013). DOI
- S. Tillack, A. Gulans, and C. Draxl, Maximally localized Wannier functions within the (L)APW+LO method, Phys. Rev. B 101, 235102 (2020). DOI
- S. Kokott, I. Hurtado, C. Vorwerk, C. Draxl, V. Blum, and M. Scheffler, GIMS: Graphical Interface for Materials Simulations, J. Open Source Softw. 6, 2767 (2021). DOI
- M. R. Carbone, F. Meng, C. Vorwerk, B. Maurer, F. Peschel, X. Qu, E. Stavitski, C. Draxl, J. Vinson, and D. Lu, Lightshow: a Python package for generating computational x-ray absorption spectroscopy input files, Open Source Softw. 8, 5182 (2023). DOI
- A. Buccheri, F. Peschel, B. Maurer, M. Voiculescu, D. T. Speckhard, H. Kleine, E. Stephan, M. Kuban, and C. Draxl, excitingtools: An exciting Workflow Tool, J. Open Source Softw. 8, 5148 (2023). DOI
Benchmark calculations
- K. Lejaeghere et al., Reproducibility in density-functional theory calculations of solids, Science 351, aad3000 (2016). DOI
- A. Gulans, A. Kozhevnikov, and C. Draxl, Microhartree precision in density functional theory calculations, Phys. Rev. B 97, 161105(R) (2018). DOI
Data science
- C. Draxl and M. Scheffler, NOMAD: The FAIR Concept for Big-Data-Driven Materials Science, MRS Bulletin 43, 676 (2018). DOI
- C. Draxl and M. Scheffler, The NOMAD Laboratory: From Data Sharing to Artificial Intelligence, J. Phys. Mater. 2, 036001 (2019). DOI
- C. Carbogno, K. S. Thygesen, B. Bieniek, C. Draxl, L. Ghiringhelli, A. Gulans, O. T. Hofmann, K. W. Jacobsen, S. Lubeck, J. J. Mortensen, M. Strange, E. Wruss, and M. Scheffler, Numerical Quality Control for DFT-based Materials Databases, npj Comput. Mater. 8, 69 (2022). DOI
- M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J. Bungartz, C. Felser, M. Greiner, A. Groß, C. Koch, K. Kremer, W. E. Nagel, M. Scheidgen, C. Wöll, and C. Draxl, FAIR data enabling new horizons for materials research, Nature 604, 635 (2022). DOI
- M. Scheidgen, L. Himanen, A. Noe Ladines, D. Sikter, M. Nakhaee, A. Fekete, T. Chang, A. Golparvar, J. A. Marquez, S. Brockhauser, S. Brückner, L. M. Ghiringhelli, F. Dietrich, D. Lehmberg, T. Denell, A Albino, H. Näsström, S. Shabih, F. Dobener, M. Kühbach, R. Mozumder, J. Rudzinski, N. Daelman, J. M. Pizarro, M. Kuban, P. Ondracka, H.-J. Bungartz, and C. Draxl, NOMAD: A distributed web-based platform for managing materials science research data, J. Open Source Softw. 8, 5388 (2023). DOI
Roadmaps
- A. M. Teale, et al., DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science, PCCP 47 (2022). DOI
- V. Gavini, S. Baroni, V. Blum, D. R. Bowler, A. Buccheri, J. R. Chelikowsky, S. Das, W. Dawson, P. Delugas, M. Dogan, C. Draxl, G. Galli, L. Genovese, P. Giannozzi, M. Giantomassi, X. Gonze, M. Govoni, A. Gulans, F. Gygi, J. M. Herbert, S. Kokott, T. D. Kühne, K.-H. Liou, T. Miyazaki, P. Motamarri, A. Nakata, J. E. Pask, C. Plessl, L. E. Ratcliff, R. M. Richard, M. Rossi, R. Schade, M. Scheffler, O. Schütt, P. Suryanarayana, M. Torrent, L. Truflandier, T. L. Windus, Q. Xu, V. W.-Z. Yu, and D. Perez, Roadmap on Electronic Structure Codes in the Exascale Era, Modelling Simul. Mater. Sci. Eng. 31, 063301 (2023). DOI
A list of our publications in chronological order can be found here.